

NASA's Ground Network (GN) Space Communications and Data Transport

McMurdo Ground Station (MGS)

Bill Watson, NASA HQ March 9, 2004

Overview

The Earth Science Enterprise (ESE) of the National Aeronautics and Space Administration is responding to the Agency vision to "understand and protect our home planet" with a shift in emphasis from missions to measurements

Aqua MODIS 21:05 UTC

Aspen Fires, Coronado National Forest, AZ Image taken June 19, 2003

NASA's Ice Research Made the News

Earth Science Enterprise

NASA reports on surface melting and ice-sheet flow in Greenland, July 12, 2002.

NASA measures the velocity of ice flow on the Lambert Glacier

Terra MISR image of calving of Pine Island iceberg, Nov. 12, 2001.

NASA discovers massive icebergs' affect on Antarctic food chain. Earth Science Enterprise

In Operation

In Implementation

NASA

Earth Science Enterprise

Earth Science Enterprise NASA

Next Generation

In Formulation

Candidate Future Missions

Next generation systematic measurement missions to extend / enhance the record of science-quality global change data.

Chemistry / Climate

Mission

Cryosphere

Monitoring

Mission

Synthetic Aperture Radar

Research missions to probe key Earth system processes globally for the first time

Orbiting Carbon Observatory

Future research measurements: Soil moisture **Advanced gravity Ocean carbon Cold climate processes Vegetation recovery**

NOAA/GOES-R

NOAA / **NPOESS**

Irradiance Measurement

Solar

Global Precipitation Measurement **Total Column** Ozone

Landsat Data Continuity Mission

Ocean Surface Topography Mission

NPOESS Preparatory Project

Operational weather services missions with NOAA

6

EOS mission control

Earth Science Mission Operations

Manage command and control spacecraft power, dynamics,
Monitor instrument operations, build composite observation schedule
Manage spacecraft recorder dumps and schedule retrieval with ground stations and space network

EOS Aqua

NASA's Ground Network

□ 50 ground station antennas; **11** Svalbard, Norway Fairbanks, AK **30 unique antenna systems** Wallops,VA 7 geographic antenna locations 6 White Merritt Island, FL Sands. NM 4 different owner/operator models 14 contracts for commercial services Hartebeesthoek, Santiago, Chile South Africa **McMurdo** Norway, TTS 13M IPO Foundation Eumetsat, SDS **Primary Support Category Owner/Operator Model** Norway, SKS 11M Orbital S-Band @ 3 mbps NASA/NENS Eumetsat, SDS NASA 11M Orbital X-Band @ 150 mbps **NASA/university** \triangle Range NASA/commercial ርጋ Shuttle Commercial Scheduling

GN Antenna Map (Number of Antennas)

Shuttle Launch

Ground Network Program Framework

On-going dynamic to maintain balance:

Science Enterprise

- Backward compatibility in space communications systems-service continuity
- Increasingly complex and higher resolution measurements are achieved

Paradigms in space communication:

- In principle, measurement and mission needs drive space communication system changes; however,
- In practice the communication system technology, spectrum regulation and signals standards become enablers for the specific mission design.

Effort invested in using existing systems for new spacecraft missions

- Adoption of space link extension standards for remote control of ground tracking station configuration
- Demonstrations of Internet protocols for routing information through heterogeneous ground tracking stations

MGS

1993 MOA Between National Science Foundation and NASA For Spacecraft
Tracking and Data Acquisition at McMurdo Station, Antarctica
1994 MGS Supports Radarsat And ERS
1996 Feb MTRS Supports FAST
1997-8 SPTR Demonstrations
2000 MOA Between NASA's GSFC And NSFs Office of Polar Programs
Concerning Support Via the TDRSS
2000 MOA Among the Air Force Space Command, NASA, and National Science
Foundation Concerning an Interagency Partnership For a Joint Spacecraft
Operations Center at McMurdo Station, Antarctica
2003 MGS/WSC RAID demo

George Iwanaga

MGS in GN

Recent Day (Feb 27) in the life of the Ground Networks

Ground Network Customer Support

CUSTOMER	AGS	MGS	SGS	WGS	PF1	SKS	WPS	PKR	AGO	MIL	DRY	WSC	DSN	ASF	TOTAL
AQUA	10		8			4									22
CHIPSAT							2								2
EO1	3		4												7
FAST							3	8							11
GRACE1				2											2
HESSI				3											3
ICESAT	1		3			1									5
JASON							1	4							5
METEOSAT							1								1
QUIKSCAT			3	1		1	2.52							9	14
RADARSAT		1													1
SM3							2								2
SAMPEX							2								2
SEAWIFS				1			1								2
SORCE				1					1						2
SWAS							2								2
TOMS EP				2			1	2							5
TRACE		1					2	5							8
WIRE							2	4							6
TOTALS	14	2	18	10	0	6	19	23	1	0	0	0	0	9	102

GP-B	055/22:10:00Z	MGS	10 Meter	Loss 0:06:00	CDS ID# 35252				
GPB NOC lost telemetry connections approximately nine minutes into test support. No indications were found at MGS of a									
problem. No errors or socket connection problems were found. MGS suggests that problem may be at GPB NOC or NISN									
issue. MGS has not had any other occurrences of same problem since test.									

GN Minutes of Support By Customer

December 2002 - November 2003

MGS Capabilities

MGS S-Band Command Characteristics

2025 - 2120 MHz

≥63 dBWi RHC or LHC

1.050

44 dBi

200 W

Value

50 kHz - 50 MHz deviation

RZ-L, M, or S; or Bio-L, M, or S

Characteristic

Frequency EIRP

Pelarization Antenna Beamwidth

Antenna Gain Output Power

http://www.wff.nasa.gov/%7Ecode452/mcmurdo.html
S-Band and X-Band Receive and Tracking
S-band commanding
TDDS Dalay (150 Mhps)

- TDRS Relay (150 Mbps)
- Virtual channel stripping
- Tape Recording (up to 150 Mbps)
- Near real-time, & post pass data delivery
- Primary antenna systems
 - 10-meter S and X-Band
 - 7.2-meter and 4.6-meter TDRS Relay
 - MGS S-Band Telemetry Characteristics

		Carrier Modulation	PM, FM, or PSK
		Modulation Index	FM: 50 kHz BPSK: ±90°
		Carrier Data Rate	$\leq 200 \ \rm kbps$
	5	Subcarrier Frequency	≤2 MHz
		Subcarrier Modulation	BPSK
		Subcarrier Data Rate	≤ 32 kbps
MGS X-Band 1	Felemetry Characte	Data Format	NRZ-L, M, or S;
Characteristic	Val	ue	
Frequency	8025 - 8400 MHz		
G/T	\geq 32.5 dB/K		
System Noise Temperature	225 K		22)
Polarization	RHC or LHC		22)
Antenna Beamwidth	0.26°		
Antenna Gain	56 dBi		
Modulation Type	QPSK or UQPSK		
Data Rate	QPSK: 6-110 M UQPSK: 10-23 M 75-90 M	bps bps bps	1
Data Format	NRZ-L, M, or S		
Decoding	Viterbi and/or Reed-)	

Characteristic	Value				
Frequency	2200 – 2400 MHz				
G/T	≥ 21.1 dB/K				
System Noise Temperature	245 K				
Polarization	RHC or LHC				
Antenna Beamwidth	0.91°				
Antenna Gain	45 dBi				
Carrier Modulation	PM, FM, AM, or BPSK				
Modulation Index	PM: 0.2 – 2.8 radians (peak)				
Carrier Data Rate	NRZ-L: 100 bps - 8 Mbps Biφ-L: 100 bps - 4 Mbps NRZ-L or Biφ-L				
Carrier Data Format					
Subcarrier Frequency	≤ 2 MHz				
Subcarrier Modulation	BPSK				
Subcarrier Data Rate	≤ 1 Mbps				
Subcarrier Data Format	NRZ-L, M, or S; Bio-L, M, or S				
Decoding	Viterbi and/or Reed-Solomon (CCSDS)				